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1 Introduction

Light-cone gauge string field theory provides a useful way to define string theories [1–3].

Given the action, it is possible to define the amplitudes and calculate them perturbatively,

although we should check if they are well-defined. Since it is a gauge fixed theory, there

is no problem in considering a light-cone gauge string field theory in noncritical space-

time dimensions. Being noncritical, it does not possess the space-time Lorentz invariance.

It should correspond to a string theory in a Lorentz noninvariant background. In other

words, we should be able to find a BRST invariant worldsheet theory, with a nonstandard

X± part.

What we would like to do in this paper is to study this X± theory. We give the energy-

momentum tensor and the action of the theory and calculate the correlation functions. We

show that the energy-momentum tensor possesses desired properties, and construct a BRST

invariant formulation of the worldsheet theory.

The reason why we are interested in this theory is that it can be used to regularize

the string field theory. The dimensional regularization is one of the most powerful regu-

larizations for ordinary quantum field theory and it may be useful also in string theory.

– 1 –



J
H
E
P
1
2
(
2
0
0
9
)
0
1
0

In particular, in the light-cone gauge superstring field theory, unwanted divergences occur

even at the tree level, because of the transverse supercurrent insertions at the interaction

points of the vertices. In ref. [4], we have proposed a dimensional regularization scheme

to deal with these divergences. We have found that the divergences of the tree amplitudes

can be regularized by shifting the number of the space-time dimensions. We have checked

that the results of the first quantized formalism are reproduced without any counterterms

for the four-point case. In order to proceed further we need to show that the dimensional

regularization preserves important symmetries of the theory. If the light-cone gauge string

field theory corresponds to a BRST invariant formulation even in noncritical dimensions,

it means that the dimensional regularization preserves the BRST symmetry.

In this paper, we deal with the case of closed bosonic string field theory. We restrict

ourselves to the tree amplitude and consider the worldsheet theory on the complex plane.

The organization of this paper is as follows. In section 2, we present a way to rewrite

light-cone gauge string amplitudes in a BRST invariant form. We follow the procedure in

noncritical dimensions, and show what kind of worldsheet theory of X± should appear in

the end. In section 3, we study the theory for X± and show that it is a CFT with the right

Virasoro central charge. Namely, combining the CFT for X± constructed here with the

worldsheet theory for the light-cone gauge strings in noncritical dimensions, we obtain a

CFT with the central charge 26 by which we can define a BRST invariant worldsheet theory.

In section 4, we show that the tree amplitudes in the noncritical case can be written in a

BRST invariant form. Section 5 is devoted to discussions. In appendix A, we present the

action of the light-cone gauge bosonic string field theory in d dimensions. In appendix B,

the Mandelstam mapping is given. In appendix C, we present a way to calculate Γ[φ],

which is used in sections 2 and 3. In appendix D, the details of the calculations in section 3

are presented.

2 Relation between light-cone gauge amplitudes and covariant ones

2.1 Critical case

In order to study the noncritical case, it is useful to consider the relation between light-cone

gauge amplitudes and covariant ones for critical strings. One can calculate the amplitudes

starting from the light-cone gauge string field theory action given in appendix A. The tree

amplitudes can be expressed by path integral on the light-cone diagrams, on which the

complex ρ coordinate is introduced as usual. Via the Mandelstam mapping ρ(z), which is

given in appendix B, one can express them using correlation functions of vertex operators

on the z-plane endowed with the metric

ds2 = dρdρ̄ = eφdzdz̄ , φ = ln
(

∂ρ∂̄ρ̄
)

. (2.1)

The correlation functions we should consider are

F = (2π)2δ

( N
∑

r=1

p+
r

)

δ

( N
∑

r=1

p−r

)∫

[

dXi
]

φ
e−S

Xi

N
∏

r=1

V LC
r . (2.2)
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Here SXi denotes the free action for the 24 transverse coordinates Xi and V LC
r denotes the

vertex operator. We assume that the r-th external state is of the form

α
i1(r)
−n1

· · · α̃
ı̃1(r)
−ñ1

· · · |p−, pi〉r , (2.3)

and the vertex operator should be

V LC
r ∼ αr

i∂n1Xi1(r)(wr)

(n1 − 1)!
· · ·

i∂̄ñ1X ı̃1(r)(w̄r)

(ñ1 − 1)!
· · · eipi

rXi−p−r τ
(r)
0 (wr, w̄r)

∣

∣

∣

∣

∣

wr=w̄r=0

, (2.4)

where τ
(r)
0 is defined in eq. (B.3), wr is the coordinate of the unit disk of the r-th external

string given in eq. (B.1) and αr = 2p+
r . The on-shell and the level-matching conditions

require that

1

2

(

−2p+
r p−r + pi

rp
i
r

)

+ Nr = 1 , Nr ≡
∑

i

ni =
∑

j

ñj . (2.5)

The path integral measure
[

dXi
]

φ
should be defined using the metric (2.1). It is related

to the measure
[

dXi
]

which is defined with the flat metric ds2 = dzdz̄ as

[

dXi
]

φ
∝
[

dXi
]

e−Γ[φ] ,

Roughly speaking, Γ [φ] is given by the Liouville action

Γ [φ] ∼ −
24

24π

∫

d2z ∂φ∂̄φ , (2.6)

where d2z = d(Re z)d(Im z). Since φ diverges at the poles and zeros of ∂ρ by the defini-

tion (2.1), the Liouville action is not well-defined at these points. Γ[φ] can be evaluated

by regularizing the divergences and carefully taking various effects into account [5, 6].

We present an alternative derivation of Γ[φ] in appendix C and give an explicit form in

eq. (C.22).1 Thus eq. (2.2) can be rewritten as

F ∼ (2π)2δ

( N
∑

r=1

p+
r

)

δ

( N
∑

r=1

p−r

)
∫

[

dXi
]

e−S
Xi−Γ[φ]

∏

r

V LC
r . (2.7)

1 As is mentioned in appendix C, this form of Γ[φ] is only up to a constant which can be fixed by

factorization. With the string field action in eq. (A.1) and the Γ[φ] in eq. (C.22), one can see that the factor

is fixed as [4]

h

dX
i
i

φ
∼

h

dX
i
i

sgn

 

N
Y

r=1

αr

!

e
−Γ[φ]

,

up to a numerical factor. We ignore the phase factor sgn
“

QN

r=1 αr

”

in the following, because it does not

play any important roles.
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Longitudinal coordinates. In order to covariantize the amplitudes, we need to intro-

duce the longitudinal coordinates. The light-cone gauge condition implies that X+ equals

the Lorentzian time on the light-cone diagram, which means on the z-plane,

X+(z, z̄) = −
i

2
(ρ(z) + ρ̄(z̄)) . (2.8)

Therefore we introduce the variable X+ with the delta function δ
(

X+ + i
2(ρ + ρ̄)

)

, which

can be expressed as

δ

(

X+ +
i

2
(ρ + ρ̄)

)

∼

∫

[

dX ′−
]

e−
1
π

R

d2zX′−∂∂̄X+
N
∏

r=1

e−ip+
r X′− (

Zr, Z̄r

)

×

∫

[

db′dc′db̃′dc̃′
]

e−
1
π

R

d2z(b′∂̄c′+b̃′∂c̃′)c′(∞)c̃′(∞) . (2.9)

Eq. (2.9) should be considered as the formal Euclideanized version of a Lorentzian path

integral.2 The Grassmann odd fields b′, c′, b̃′, c̃′ of conformal weights (1, 0), (0, 0), (0, 1),

(0, 0) are introduced to cancel the determinant factor
(

det ∂∂̄
)−1

.

With these variables, we can rewrite the right hand side of eq. (2.7) as

F ∼
2πδ

(

∑N
r=1 p−r

)

2πδ(0)

∫

[

dX+dX ′−dXidb′dc′db̃′dc̃′
]

e−S
Xi−S′

±−Sb′c′

×c′(∞)c̃′(∞)

N
∏

r=1

(

V LC
r e−ip+

r X′− (

Zr, Z̄r

)

)

, (2.10)

where

Sb′c′ =
1

π

∫

d2z
(

b′∂̄c′ + b̃′∂c̃′
)

,

S′
± = −

1

2π

∫

d2z
(

∂X+∂̄X ′− + ∂̄X+∂X ′−
)

+ Γ
[

ln
(

−4∂X+∂̄X+
)]

. (2.11)

We consider SXi + S′
± + Sb′c′ as the worldsheet action for these variables. The action S′

±

is with the interaction term which depends only on X+. This interaction term does not

affect the correlation functions with less than two insertions of X ′−, and they coincide with

those of the free theory. Thus one can show the OPE

X+(z, z̄)X+(z′, z̄′) ∼ regular ,

X+(z, z̄)X ′−(z′, z̄′) ∼ ln
∣

∣z − z′
∣

∣

2
. (2.12)

From the worldsheet action, the energy-momentum tensor can be obtained as

T (z) = ∂X+∂X ′− − 2
{

X+, z
}

−
1

2
∂Xi∂Xi − b′∂c′ , (2.13)

2 In the light-cone gauge, the worldsheet should be inherently with Lorentzian signature. In this paper,

we use the Euclideanized expressions, which look more familiar.
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when z 6= Zr, zI . Here

{

X+, z
}

=
∂3X+

∂X+
−

3

2

(

∂2X+

∂X+

)2

= −
1

2

(

∂
(

ln
(

−4∂X+∂̄X+
)))2

+ ∂2
(

ln
(

−4∂X+∂̄X+
))

,

denotes the Schwarzian derivative. This term can be derived from the variation of Γ which

coincides with the Liouville action except for the singular points.

Covariant variables. The covariant expression for the amplitudes can be obtained by

introducing [7]

b ≡ ∂X+b′ ,

c ≡
(

∂X+
)−1

c′ , (2.14)

and their anti-holomorphic counterparts b̃ and c̃. The fields b and c have now weights (2, 0)

and (−1, 0) respectively. We should also introduce

X− ≡ X ′− +
b′c′

∂X+
−

∂2X+

2 (∂X+)2
+

b̃′c̃′

∂̄X+
−

∂̄2X+

2
(

∂̄X+
)2 , (2.15)

so that the OPE’s between X− and the ghosts are regular and the energy-momentum

tensor (2.13) takes the form

T (z) = ∂X+∂X− −
1

2
∂Xi∂Xi − 2b∂c − ∂bc , (2.16)

which coincides with the energy-momentum tensor in the conformal gauge. In the following,

we would like to rewrite the correlation function (2.10) using these new variables.

DDF operators. Let us first consider the vertex operator. From eq. (2.16), one can see

that the action for the new variables should be the free action. X− appears essentially in

the same way as X ′− does in eq. (2.9), and we obtain the delta function. Therefore ρ(z)

and ρ̄(z̄) which appear in the integrand can be replaced by 2iX+
L (z) and 2iX+

R (z̄), where

X+
L (z) and X+

R (z̄) are the holomorphic and the anti-holomorphic part of X+ respectively.

We will denote the equality which holds under this identification by ≈. Thus the factor
i∂nXi(wr)

(n−1)!

∣

∣

∣

wr=0
in the definition (2.4) of V LC

r can be rewritten as

i∂nXi(wr)

(n − 1)!

∣

∣

∣

∣

wr=0

=

∮

0

dwr

2πi
i∂Xi(wr)w

−n
r

≈

∮

Zr

dz

2πi
i∂Xi(z)e

−in
X

+
L

(z)

p
+
r

+n
τ
(r)
0

+iβr

αr

= A
(r)i
−n e

n
τ
(r)
0

+iβr

αr , (2.17)

where A
(r)i
−n is the DDF operator given by

A
(r)i
−n ≡

∮

Zr

dz

2πi
i∂Xi(z)e

−in
X

+
L

(z)

p
+
r . (2.18)

– 5 –
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One can also use

e
−i
“

p−r − 2Nr
αr

”

X+

(z, z̄) ≈ e
− 1

2

“

p−r − 2Nr
αr

”

(ρ+ρ̄)
(z, z̄)

∼ |z − Zr|
−2(p+

r p−r −Nr) e
−2(p+

r p−r −Nr)

 

τ
(r)
0
αr

−Re N̄rr
00

!

(2.19)

for z ∼ Zr, where N̄ rr
00 is defined in eq. (C.18). Using these, one can show that

V LC
r e−ip+

r X′−

(Zr, Z̄r) in eq. (2.10) subject to the on-shell condition (2.5) can be rewrit-

ten as

V LC
r e−ip+

r X′−

(Zr, Z̄r) ≈ αrV
DDF
r (Zr, Z̄r)e

2ReN̄rr
00 , (2.20)

where

V DDF
r (z, z̄) = A

(r)i1
−n1

· · · Ã
(r)̃ı1
−ñ1

· · · :e
−ip+

r X−−i
“

p−r − 2Nr
αr

”

X++ipi
rXi

(z, z̄) : (2.21)

is the vertex operator corresponding to the DDF state.

Covariant expression. One subtle point to notice in eq. (2.14) is that the variables b, c

should have zeros and poles at the zeros and poles of ∂X+. Since the integration over X−

leads to the identification X+ ≈ − i
2(ρ + ρ̄), the zeros and poles of ∂X+ become those of

∂ρ, namely zI and Zr. Accordingly b should be inserted at zI and c should be inserted at

Zr, if we wish to rewrite eq. (2.10) [7–10]. These insertions should come with appropriate

factors made from ρ, ρ̄ or X+ in order that eq. (2.10) is reproduced. Using eqs. (2.20)

and (C.25), one can show that eq. (2.10) can be rewritten as

F ∼

∫

[

dXµdbdcdb̃dc̃
]

e−SX−Sbc

∣

∣

∣

∣

∣

∑

r

αrZr

∣

∣

∣

∣

∣

2(

lim
z→∞

1

|z|4
c (z) c̃ (z̄)

)

×
∏

I

(

b

∂2ρ
(zI)

b̃

∂̄2ρ̄
(z̄I)

)

N
∏

r=1

(

cc̃V DDF
r

) (

Zr, Z̄r

)

, (2.22)

where SX and Sbc are the free actions for Xµ = (X±,Xi) and for b, c respectively.

One can show that eq. (2.22) yields the expression for the amplitudes in the conformal

gauge. Using

b

∂2ρ
(zI) =

∮

zI

dz

2πi

b

∂ρ
(z) ,

and deforming the contour, one can recast eq. (2.22) into the form

F ∼

∫

[

dXµdbdcdb̃dc̃
]

e−SX−Sbc

×
∏

I

(

∮

CI

dz

2πi

b

∂ρ
(z)

∮

CI

dz̄

2πi

b̃

∂̄ρ̄
(z̄)

)

N
∏

r=1

(

cc̃V DDF
r

) (

Zr, Z̄r

)

, (2.23)

where the integration contour CI is depicted in figure 1 in appendix C on the ρ-plane.
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The amplitudes can be obtained by integrating the correlation function F over the

N − 3 moduli parameters TI defined in eq. (C.4) as

A ∝

∫

∏

I

d2TI F (TI , T̄I) . (2.24)

One can see that the antighost insertion
∮

CI

dz
2πi

b
∂ρ

(z) corresponds to the quasiconformal

vector field associated with the moduli parameter TI . The form of the amplitude is BRST

invariant, because the vertex operator cc̃V DDF
r is invariant and

{

QB,

∮

CI

dz

2πi

b

∂ρ
(z)

}

=

∮

CI

dz

2πi

T

∂ρ
(z) , (2.25)

yields a total derivative with respect to TI .

We can change the integration variables to Zr (r = 3, 4, · · · , N − 1) and

A ∝

∫ N−1
∏

r=3

d2Zr

∣

∣

∣

∣

det

(

∂TI

∂Zr

)∣

∣

∣

∣

2

F (TI , T̄I) . (2.26)

With the expression (2.23) for F , the determinant factor can be combined with the

antighost factors as

det

(

∂TI

∂Zr

)

×
∏

I

∮

CI

dz

2πi

b

∂ρ
(z) ∝

N−1
∏

r=3

(

∑

I

∂TI

∂Zr

∮

CI

dz

2πi

b

∂ρ
(z)

)

=

N−1
∏

r=3

(

∑

I

∮

CI

dz

2πi

∂Zr (ρ(z) − ρ(zI))

∂ρ(z)
b(z)

−
∑

I

∮

CI

dz

2πi

∂Zr (ρ(z) − ρ(zI+1))

∂ρ(z)
b(z)

)

∝
N−1
∏

r=3

(

N
∑

s=1

∮

Zs

dz

2πi

∂Zr (ρ(z) − ρ(zI(s)))

∂ρ(z)
b(z)

)

. (2.27)

Performing the contour integrals around Zs in the last line, we eventually obtain the familiar

expression

A ∝

∫

[

dXµdbdcdb̃dc̃
]

e−SX−Sbc

×
∏

s=1,2,N

(

cc̃V DDF
s

) (

Zs, Z̄s

)

N−1
∏

r=3

∫

d2ZrV
DDF
r

(

Zr, Z̄r

)

. (2.28)

Hence the variables X±, b, c can be identified with those in the covariant formulation.

From eq. (2.15), one can find the OPE’s of the variables X+,X ′−, b′, c′ to be

∂X+(z)∂X+(z′) ∼ regular ,

∂X+(z)∂X ′−(z′) ∼
1

(z − z′)2
,

∂X ′−(z)∂X ′−(z′) ∼ −2∂z∂z′

(

1

(z − z′)2
1

∂X+(z)∂X+(z′)

)

,

b′(z)c′(z′) ∼
1

z − z′
, (2.29)

– 7 –
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and regular otherwise. These can also be deduced from the action (2.11). Using these

OPE’s, one can easily show that the energy-momentum tensor (2.13) satisfies the Virasoro

algebra of central charge c = 0.

2.2 Noncritical case

The light-cone gauge string field theory in d (d 6= 26) space-time dimensions can be defined

with the action given in appendix A. This time, the correlation functions we should

consider is3

F ∼ (2π)2δ

( N
∑

r=1

p+
r

)

δ

( N
∑

r=1

p−r

)
∫

[

dXi
]

e−S
Xi−

d−2
24

Γ[φ]
∏

r

V LC
r . (2.30)

We can follow the above procedure and introduce the variables X±, b, c without any prob-

lem. In this case, eq. (2.13) should be

T (z) = ∂X+∂X ′− −
1

2
∂Xi∂Xi −

d − 2

12

{

X+, z
}

− b′∂c′ . (2.31)

By using X±, b, c defined in eq. (2.15), T (z) can be rewritten as

T (z) = ∂X+∂X− −
d − 26

12

{

X+, z
}

−
1

2
∂Xi∂Xi − 2b∂c − ∂bc , (2.32)

and the action SX± should be

SX± = −
1

2π

∫

d2z
(

∂X+∂̄X− + ∂̄X+∂X−
)

+
d − 26

24
Γ[ln

(

−4∂X+∂̄X+
)

] . (2.33)

Therefore in noncritical dimensions the worldsheet theory for X± is different from the usual

free theory, and obviously the Lorentz symmetry is broken.

What we should study is this theory for X±. It is a conformal field theory similar to

the one for X+ and X ′− in the previous subsection. We will study its properties in the

next section.

Before closing this subsection, a comment is in order. For d 6= 26, one can define

b′′ ≡
(

∂X+
)α

b′ ,

c′′ ≡
(

∂X+
)−α

c′ ,

X ′′− ≡ X ′− + α
b′c′

∂X+
−

α

2

∂2X+

(∂X+)2
+ α

b̃′c̃′

∂̄X+
−

α

2

∂̄2X+

(∂̄X+)2
, (2.34)

with

α (α + 1) =
d − 2

12
. (2.35)

3 This time we have

h

dX
i
i

φ
∼

h

dX
i
i

sgn

 

N
Y

r=1

αr

!

e
−

d−2

24
Γ[φ]

,

and we ignore the phase sgn
“

QN

r=1 αr

”

in the following.
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Using these variables, the energy-momentum tensor (2.31) can be written as

T (z) = ∂X+∂X ′′− −
1

2
∂Xi∂Xi − b′′∂c′′ − α∂

(

b′′c′′
)

. (2.36)

Therefore the worldsheet theory is a free theory with ghosts of noninteger spins. We may

be able to study the theory using these variables, although we need to figure out the way

to deal with the ghost zero-modes.

3 X± CFT

3.1 Action and correlation functions

The theory we would like to consider is with the action (2.33) and the energy-

momentum tensor

TX±(z) = ∂X+∂X− −
d − 26

12

{

X+, z
}

. (3.1)

This theory will be well-defined if ∂X+ has a nonvanishing expectation value. As in the

case of the theory for X+ and X ′−, we always consider this theory in the presence of the

insertions of the vertex operators e−ip+
r X−

(Zr, Z̄r) (r = 1, . . . , N) with
∑N

r=1 p+
r = 0, so

that the classical equation of motion implies

X+(z, z̄) = −i

N
∑

r=1

p+
r ln |z − Zr|

2 = −
i

2
(ρ (z) + ρ̄ (z̄)) . (3.2)

Thus the quantities we would like to calculate are the expectation values
〈

F
[

X+,X−
]

N
∏

r=1

e−ip+
r X− (

Zr, Z̄r

)

〉

≡

∫

[

dX+dX−
]

e−S
X±F

[

X+,X−
]

N
∏

r=1

e−ip+
r X− (

Zr, Z̄r

)

, (3.3)

for functionals F [X+,X−] which satisfy

F
[

X+ + ǫ+,X− + ǫ−
]

= F
[

X+,X−
]

, (3.4)

for arbitrary constants ǫ±.

For functionals F [X+] which do not depend on X−, it is formally possible to perform

the path integral as in eq. (2.9) and obtain
〈

F
[

X+
]

N
∏

r=1

e−ip+
r X− (

Zr, Z̄r

)

〉

∼ F

[

−
i

2
(ρ + ρ̄)

]

exp

(

−
d − 26

24
Γ
[

ln
(

∂ρ∂̄ρ̄
)]

)

, (3.5)

up to the factor coming from the integration over the zero-modes of X±. It is convenient

to define

〈

F
[

X+,X−
]〉

ρ
≡

〈

F [X+,X−]
∏N

r=1 e−ip+
r X− (

Zr, Z̄r

)

〉

〈

∏N
r=1 e−ip+

r X−
(

Zr, Z̄r

)

〉 , (3.6)

and we obtain
〈

F
[

X+
]〉

ρ
= F

[

−
i

2
(ρ + ρ̄)

]

. (3.7)
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F
[

−

i

2
(ρ + ρ̄)

]

exp
(

−

d−26

24
Γ
[

ln
(

∂ρ∂̄ρ̄
)]

)

as a generating functional. The manip-

ulation to obtain eq. (3.5) is rather formal because ∂ρ(z) possesses zeros and poles and we

need to specify the regularization procedure to define Γ
[

ln
(

∂ρ∂̄ρ̄
)]

. As we mentioned in

the last section, this was done in ref. [5] and Γ
[

ln
(

∂ρ∂̄ρ̄
)]

is given for arbitrary Mandel-

stam mapping ρ. Assuming that eq. (3.5) is true with Γ derived in ref. [5] (and also in

appendix C), one can calculate correlation functions which involve X−. Roughly speak-

ing, differentiating the left hand side of eq. (3.5) with respect to p+
N and setting p+

N = 0,

we obtain
〈

F
[

X+
]

X−(ZN , Z̄N )
N−1
∏

r=1

e−ip+
r X− (

Zr, Z̄r

)

〉

, (3.8)

although the momentum conservation condition complicates the procedure a bit. In the

same way, we can in principle obtain arbitrary correlation functions, treating the right

hand side of eq. (3.5) as a kind of generating functional.

Since all the correlation functions on the complex plane are given this way, we define

the theory based on eq. (3.5), rather than starting from the action (2.33). If one define

the theory in this way, it is not a priori clear if TX±(z) in eq. (3.1) can be considered as

the energy-momentum tensor. In the rest of this section, we would like to calculate the

correlation functions of TX±(z) and examine if it can be regarded as the energy-momentum

tensor of the theory.

One comment is in order. The operator e−ip+X−

can be considered to create a hole

of length α in the light-cone diagram. Therefore it is similar to the macroscopic observ-

ables in the old matrix models [11]. These operators are nonlocal objects and give rise to

singularities at zI where no operators are inserted. Taking p+ → 0 limit to obtain local

operators is exactly what was done in the old matrix models.

3.2 Correlation functions of X−

In order to calculate the correlation functions of TX±(z), we need correlation functions of

X−. Let us follow the above-mentioned procedure and calculate them.

One point function. First we consider the simplest example, 〈∂X− (z)〉ρ. In order to

calculate this quantity we start from

〈

N+1
∏

r=0

e−ip+
r X− (

Zr, Z̄r

)

〉

∼ exp

(

−
d − 26

24
Γ
[

ln
(

∂ρ′∂̄ρ̄′
)]

)

, (3.9)

where p+
N+1 = −p+

0 and

ρ′(z) =

N+1
∑

r=0

αr ln(z − Zr) , αN+1 = −α0 . (3.10)

Then the one point function 〈∂X− (z)〉ρ can be given as

〈

∂X− (Z0)
〉

ρ
= 2i ∂Z0∂α0

(

−
d − 26

24
Γ
[

ln
(

∂ρ′∂̄ρ̄′
)]

)∣

∣

∣

∣

α0=0

. (3.11)
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It is straightforward to evaluate the right hand side of eq. (3.11) by using the expres-

sion (C.22) for Γ[φ]. In the calculations, one should notice the following points. While

there are N interaction points z′I′ for ρ′, there are only N − 2 interaction points zI for

ρ = limα0→0 ρ′. Since

∂ρ′(z) = ∂ρ(z) +
α0

z − Z0
−

α0

z − ZN+1
, (3.12)

what happens in the limit α0 → 0 is as follows: One of z′I′ ’s, which we denote by z′
I(0) , goes

to Z0; One of z′I′ ’s, which we denote by z′
I(N+1) , goes to ZN+1; The other interaction points

z′I go to the interaction points zI for ρ, which are denoted with the same subscripts. As we

mentioned earlier, e−ip+
0 X−

(Z0) with finite p+
0 should be considered as a nonlocal operator,

which induces singularities at the interaction points where there are no operator insertions.

z′
I(0) → Z0 in the limit p+

0 → 0 is consistent with the fact that e−ip+
0 X−

(Z0) tends to a local

operator. One subtle point to notice is that if Z0 is close to one of Zr (r = 1, · · · , N) and

the interaction point nearest to Zr coincides with z′
I(0) , the Neumann coefficient N̄ ′rr

00 does

not go to N̄ rr
00 in the limit p+

0 → 0. Since Γ
[

ln
(

∂ρ′∂̄ρ̄′
)]

depends on N̄ ′rr
00, it implies that

e−ip+
0 X−

(Z0) has a nonlocal effect even if we take p+
0 → 0 in such a configuration. Then

we cannot expect to get correlation functions of local operators from Γ
[

ln
(

∂ρ′∂̄ρ̄′
)]

. In

the following, we will assume that Z0 and ZN+1 are not close to any of Zr (r = 1, · · · , N),

to avoid such a situation. Namely we assume that ρ(Z0) and ρ(ZN+1) are not in the

regions of external propagators in the ρ plane. We calculate 〈∂X− (Z0)〉ρ for such Z0, and

analytically continue the result to the whole complex plane.

Using the identities presented in appendix D, we obtain

〈

∂X− (z)
〉

ρ
=

d − 26

24
2i

[

−
N
∑

r=1

1

αr

(

1

z − z
(r)
I

−
1

z − Zr

)

−
∑

I

1

∂2ρ(zI)

1

(z − zI)2
∂(−W )

∂zI

−3
∑

I

(

1

∂2ρ(zI)

1

(z − zI)3
−

∂3ρ(zI)

2 (∂2ρ(zI))
2

1

(z − zI)2

)

]

, (3.13)

where W is defined in eq. (C.15).

One can generalize eq. (3.11) and calculate the correlation functions with insertions of

X+ as

〈

∂X− (Z0)F
[

X+
]〉

ρ

=
2i∂Z0∂α0

〈

F [X+]
∏N+1

r=0 e−ip+
r X− (

Zr, Z̄r

)

〉

〈

∏N+1
r=0 e−ip+

r X−
(

Zr, Z̄r

)

〉

∣

∣

∣

∣

∣

∣

α0=0

=
〈

∂X− (Z0)
〉

ρ
F

[

−
i

2
(ρ + ρ̄)

]

+

∫

d2z
1

Z0 − z

δF [X+]

δX+(z, z̄)

∣

∣

∣

∣

X+=− i
2
(ρ+ρ̄)

. (3.14)

Since we are dealing with the correlation functions with source terms for X−, we can read

off the operator relations from these correlation functions. From eqs. (3.7) and (3.14), we
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obtain the OPE’s

∂X+(z)∂X+(z′) ∼ regular , ∂X−(z)∂X+(z′) ∼
1

(z − z′)2
, (3.15)

which are valid if z and z′ are away from the singularities Zr, zI . These are consistent with

eq. (2.29).

Two point function. The two point function for ∂X− can be calculated by using

eq. (3.13) as

〈

∂X−(z)∂X−(Z0)
〉

ρ
= 2i∂Z0∂α0

〈

∂X− (z)
〉

ρ′

∣

∣

∣

α0=0
+
〈

∂X− (z)
〉

ρ

〈

∂X− (Z0)
〉

ρ
. (3.16)

Here we are interested in the singularity at z = Z0. It is straightforward to calculate the

right hand side of eq. (3.16) and obtain

〈

∂X−(z)∂X−(Z0)
〉

ρ
= (2i)2

(

−
d − 26

12

)

∂z∂Z0

[

1

(z − Z0)2
1

∂ρ(z)∂ρ(Z0)

]

+ regular terms .

(3.17)

From this, we deduce the OPE

∂X−(z)∂X−(z′) ∼ −
d − 26

12
∂z∂z′

[

1

(z − z′)2
1

∂X+(z)∂X+(z′)

]

∼ −
d − 26

12

[

−
1

(z − z′)4
6

(∂X+(z′))2
−

1

(z − z′)3
3∂

(

1

(∂X+(z′))2

)

−
1

(z − z′)2
1

2
∂2

(

1

(∂X+(z′))2

)]

, (3.18)

which is valid if z and z′ are away from the singularities Zr, zI . This is consistent with

eq. (2.29).

We can also obtain an expression for the correlation functions with X+ insertions as

we did in eq. (3.14):

〈

∂X− (z) ∂X− (w) F
[

X+
]〉

ρ

=
〈

∂X− (z) ∂X− (w)
〉

ρ
F

[

−
i

2
(ρ + ρ̄)

]

+
〈

∂X− (z)
〉

ρ

∫

d2w′ 1

w − w′

δF [X+]

δX+(w′, w̄′)

∣

∣

∣

∣

X+=− i
2
(ρ+ρ̄)

+
〈

∂X− (w)
〉

ρ

∫

d2z′
1

z − z′
δF [X+]

δX+(z′, z̄′)

∣

∣

∣

∣

X+=− i
2
(ρ+ρ̄)

+

∫

d2z′
∫

d2w′ 1

z − z′
1

w − w′

δ2F [X+]

δX+(z′, z̄′)δX+(w′, w̄′)

∣

∣

∣

∣

X+=− i
2
(ρ+ρ̄)

. (3.19)

3.3 Energy-momentum tensor

To be precise, the term ∂X+∂X−(z) in TX±(z) given in eq. (3.1) is defined as

:∂X+∂X−(z) : = lim
z′→z

(

∂X+(z′)∂X−(z) −
1

(z′ − z)2

)

. (3.20)
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Then the correlation functions with one TX±(z) insertion can be evaluated as

〈

TX±(z)F
[

X+
]〉

ρ

= 〈TX±(z)〉ρ F

[

−
i

2
(ρ + ρ̄)

]

−
i

2
∂ρ (z)

∫

d2z′
1

z − z′
δF [X+]

δX+(z′, z̄′)

∣

∣

∣

∣

X+=− i
2
(ρ+ρ̄)

, (3.21)

where

〈TX±(z)〉ρ = −
i

2
∂ρ (z)

〈

∂X− (z)
〉

ρ
−

d − 26

12
{ρ, z} . (3.22)

One can evaluate the right hand side of eq. (3.22) and examine how it behaves around

the possible singularities:

〈TX±(z)〉ρ ∼































1

z − Zr

∂
(

−d−26
24 Γ[φ]

)

∂Zr
z ∼ Zr

regular z ∼ zI

O
(

1
z4

)

z ∼ ∞

. (3.23)

Eqs. (3.23) and (3.21) imply that TX±(z) is regular at z = zI and ∞, if no operators

are inserted there. Therefore, although X−(z) is singular at z = zI without any operator

insertions, the energy momentum tensor is regular and conserved. This property is essential

for constructing the BRST charge. From eq. (3.23) for z ∼ Zr we can read off the OPE

TX±(z)e−ip+
r X−

(Zr, Z̄r) ∼
1

z − Zr
∂e−ip+

r X−

(Zr, Z̄r) . (3.24)

Although e−ip+
r X−

is a nonlocal operator, it behaves as a primary field of weight 0.

Using the OPE’s (3.15) and (3.18), we can show that TX±(z) satisfies

TX±(z)TX±(z′) ∼
1
2(28 − d)

(z − z′)4
+

2

(z − z′)2
TX±(z′) +

1

z − z′
∂TX±(z′) . (3.25)

Therefore the central charge of the Virasoro algebra in the X± CFT is 28−d. We can also

find that

TX±(z)∂X±(z′) ∼
1

(z − z′)2
∂X±(z′) +

1

z − z′
∂2X±(z′) , (3.26)

and thus ∂X± are primary fields of weight 1.

4 BRST invariant formulation in noncritical dimensions

Since the worldsheet theory for X± is a CFT with Virasoro central charge 28− d, with the

transverse coordinates Xi added the total central charge of the system for X± and Xi is

26. Therefore with ghosts b and c, we can construct a nilpotent BRST charge QB.

As we have shown in section 2, the amplitude for the light-cone gauge string field

theory can be rewritten by using these variables. We start from the correlation function
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given in eq. (2.30), where the vertex operator V LC
r is of the form (2.4) but with the on-

shell condition
1

2

(

−2p+
r p−r + pi

rp
i
r

)

+ Nr =
d − 2

24
. (4.1)

We can proceed in the same way as in section 2 and eventually obtain

F ∼

∫

[

dX±dXidbdcdb̃dc̃
]

e−S
Xi−S

X±−Sbc

×
∏

I

(

∮

CI

dz

2πi

b

∂ρ
(z)

∮

CI

dz̄

2πi

b̃

∂̄ρ̄
(z̄)

)

×
N
∏

r=1

(

cc̃V DDF
r exp

(

−i
d − 26

24

X+

p+
r

))

(

Zr, Z̄r

)

×
N
∏

r=1

exp

(

i
d − 26

24

X+

p+
r

)

(

z
(r)
I , z̄

(r)
I

)

, (4.2)

where V DDF
r is defined in the same way as in eq. (2.21).

It is easy to show that V DDF
r exp

(

−id−26
24

X+

p+
r

)

is a primary field of weight (1, 1) and

TX±(z) is regular even with the insertion exp
(

id−26
24

X+

p+
r

)

(z
(r)
I , z̄

(r)
I ). Therefore eq. (4.2)

gives a BRST invariant expression for the amplitude. V DDF
r exp

(

−id−26
24

X+

p+
r

)

may look as

a vertex operator with momentum

p′−r = p−r +
1

p+
r

d − 26

24
, (4.3)

instead of p−r , but the momentum which is conserved is p−. The conserved momentum can

be identified with the operator
∮

dz

2πi
i∂X−(z) , (4.4)

on the worldsheet, which is conserved at the interaction points with insertions

exp
(

id−26
24

X+

p+
r

)

.

5 Discussions

In this paper, we have constructed a BRST invariant worldsheet theory which corresponds

to the light-cone gauge string field theory in d (d 6= 26) space-time dimensions. The

worldsheet theory for the longitudinal coordinate variables X± is different from the usual

free theory, but it is a CFT with c = 28 − d. Our results provide yet another way to

construct string theories in noncritical dimensions. The BRST invariant formulation will

be useful to study D-branes for such string theories.

Now that the CFT is given, we can at least formally construct the interaction vertices

of the string field theory based on this CFT through the prescription of ref. [12]. Since we

have constructed the CFT on the worldsheet of the light-cone string diagram, the gauge

unfixed version of the string field theory is supposed to possess the joining-splitting type

of interactions. Such a theory looks similar to the α = p+ HIKKO theory given in ref. [13].
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The results in this paper should be generalized to be used in regularizing string field

theory. One should consider the X± on the Riemann surfaces with higher genera, in order

to check if it works for regularizing the UV and IR divergences. One should also construct

a supersymmetric version of the CFT. The light-cone gauge superstring field theory in

noncritical dimensions can be used to dimensionally regularize the tree amplitudes of the

critical theory, as was discussed [4]. It is possible to generalize the calculations performed

in this paper into the superstring case, although they are much more complicated. We will

present these results elsewhere.
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A Action of light-cone gauge string field theory

In order to fix the notation, we present the action for the light-cone gauge bosonic string

field theory in d space-time dimensions. The worldsheet variables are Xi (i = 1, · · · , d−2).

The action of the string field theory takes the form

S =

∫

dt

[

1

2

∫

d1d2 〈R(1, 2) |Φ〉1

(

i
∂

∂t
−

L
LC(2)
0 + L̃

LC(2)
0 − d−2

12

α2

)

|Φ〉2

+
2g

3

∫

d1d2d3 〈V3(1, 2, 3)|Φ〉1|Φ〉2|Φ〉3

]

. (A.1)

Here L
LC(r)
0 is the zero-mode of the transverse Virasoro generators for the r-th string,

g is the coupling constant, and dr denotes the integration measure for the momentum

zero-modes of the r-th string defined as

dr =
αrdαr

4π

dd−2pr

(2π)d−2
, (A.2)

where αr = 2p+
r is the string-length parameter of the r-th string. 〈R(1, 2)| is the reflector

given by

〈R(1, 2)| = δ(1, 2)
1

α1
2〈0| 1〈0|e

−
P∞

n=1
1
n

“

α
i(1)
n α

i(2)
n +α̃

i(1)
n α̃

i(2)
n

”

,

δ(1, 2) = 4πδ (α1 + α2) (2π)d−2δd−2 (p1 + p2) . (A.3)

〈V3(1, 2, 3)| denotes the three-string interaction vertex defined as

〈V3(1, 2, 3)| = 4πδ

( 3
∑

r=1

αr

)

sgn(α1α2α3)

∣

∣

∣

∣

∣

e
−2τ̂0

P3
r=1

1
αr

α1α2α3

∣

∣

∣

∣

∣

d−2
24
〈

V LPP
3 (1, 2, 3)

∣

∣ , (A.4)

Here
〈

V LPP
3 (1, 2, 3)

∣

∣ is the three-string LPP vertex [12] for the transverse coordinate vari-

ables Xi and τ̂0 =
∑3

r=1 αr ln |αr|. The string field |Φ〉 is taken to obey the reality and the

level-matching conditions.
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B Mandelstam mapping

Let ρ be the standard complex coordinate on the N -string tree diagram with the joining-

splitting type interaction. The portion on the ρ-plane corresponding to the r-th external

string (r = 1, . . . , N) is mapped to the unit disk, |wr| ≤ 1, of the r-th string as

ρ = αr ln wr + τ
(r)
0 + iβr , (B.1)

where τ
(r)
0 + iβr is the coordinate on the ρ-plane at which the r-th string interacts.

The N -string tree diagram is mapped to the complex z-plane with N punctures by the

Mandelstam mapping [2]

ρ(z) =

N
∑

r=1

αr ln(z − Zr) ,

N
∑

r=1

αr = 0 , (B.2)

where the puncture z = Zr corresponds to the origin of the unit disk wr = 0. The N − 2

interaction points zI (I = 1, · · · , N − 2) are determined by ∂ρ(zI) = 0. These are related

to the interaction points on the ρ-plane by

ρ(z
(r)
I ) = τ

(r)
0 + iβr , (B.3)

where z
(r)
I denotes one of zI at which the r-th external string interacts. The fact that zI ’s

are the zeros of ∂ρ(z) yields

∂ρ(z) =

(

N
∑

s=1

αsZs

)

∏

I(z − zI)
∏N

r=1(z − Zr)
, (B.4)

∂2ρ(zI) =

(

N
∑

s=1

αsZs

)

∏

J 6=I(zI − zJ)
∏N

r=1(zI − Zr)
, (B.5)

∑N
r=1 αrZ

2
r

∑N
s=1 αsZs

= −

(

∑

I

zI −
N
∑

r=1

Zr

)

, (B.6)

αr =

(

N
∑

s=1

αsZs

)

∏

I(Zr − zI)
∏

s 6=r(Zr − Zs)
. (B.7)

C Computation of Γ[φ]

Γ[φ] can be obtained by evaluating the Liouville action for the metric (2.1) on the z-

plane [5, 6]. Here we will present an alternative derivation. e−Γ[φ] can be regarded as the

partition function of the light-cone gauge string theory in 26 space-time dimensions from

the view point of the worldsheet CFT on the light-cone diagram. Therefore the variation

δΓ[φ] under

Zr → Zr + δZr , Z̄r → Z̄r + δZ̄r , αr → αr + δαr (r = 1, . . . , N) , (C.1)

can be given by using the expectation value of the transverse energy-momentum tensor

TXi . We can obtain Γ[φ] by integrating δΓ[φ]. The result should be up to a factor which
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does not change under the variation eq. (C.1). Such a factor can be fixed by imposing the

factorization condition in each case [4].

Before we begin the calculation, two comments are in order. Because of the constraint
∑N

r=1 αr = 0, all the δαr’s cannot be treated as independent variations. Here we think of

δαr with r = 1, · · · , N − 1 as independent of each other and δαN as being determined by

the relation

δαN = −
N−1
∑

r=1

δαr . (C.2)

We also note that Γ[φ] involves divergence originating from the infinite length of the exter-

nal lines. We regularize it by cutting off the r-th external line so that its length becomes

αrℓr, where ℓr is a large positive constant. By doing so, the contribution from the r-th

external line to the partition function becomes e−2ℓr , and the divergences of Γ[φ] become

independent of the parameters αr, Zr. On the z-plane, this corresponds to cutting a hole

of radius ǫr around Zr, where ǫr and ℓr are related as

αrℓr = Re
(

ρ(z
(r)
I ) − ρ(Zr + ǫr)

)

. (C.3)

Variation δ (−Γ[φ]). The variations (C.1) correspond to the variations of the following

parameters of the light-cone diagram: (I) the moduli parameters

TI ≡ ρ (zI+1) − ρ (zI) ; (C.4)

(II) the heights αrℓr of the external cylinders; (III) the circumferences 2παr of the external

cylinders. Thus the variation δ(−Γ[φ]) is expressed as

δ (−Γ[φ]) = (I) + (II) + (III) , (C.5)

where

(I) =
∑

I

δTI

∮

CI

dρ

2πi
〈TXi(ρ)〉 + c.c. ,

(II) =

N−1
∑

r=1

[

−ℓrδαr

∮

ρ(Zr)

dρ

2πi
〈TXi(ρ)〉 + ℓNδαr

∮

ρ(ZN )

dρ

2πi
〈TXi(ρ)〉

]

+ c.c. ,

(III) =

N−1
∑

r=1

i2πδαr

∫

LrN

dρ

2πi
〈TXi(ρ)〉 + c.c. . (C.6)

Here c.c. stands for the complex conjugate. The integration contour CI of the term (I) lies

between the consecutive interaction points ρ(zI+1) and ρ(zI) as depicted in figure 1. The

integration path LrN of term (III) in eq. (C.6) is a line stretching from the asymptotic

region of the r-th external string to that of the N -th string on the ρ-plane. As an example,

the path L1N is depicted in figure 1. On the z-plane, the path LrN becomes a segment

connecting the two punctures Zr and ZN with the orientation from Zr to ZN .

The expectation value of TXi(ρ) can be evaluated by going to the z-plane. Since

TXi(ρ) =
1

(∂ρ(z))2
(TXi(z) − 2{ρ, z}) , 〈TXi(z)〉 = 0 , (C.7)
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0τ (3)
0 τ (4)

0

Figure 1. A typical N -string tree diagram with N = 6. The contours CI and the path L1N on the

ρ-plane of the integrals in eq. (C.6) are depicted for this case.

we obtain

〈TXi(ρ)〉 =
1

(∂ρ(z))2 (−2{ρ, z}) . (C.8)

Using eq. (C.8), one can rearrange the term (I) in eq. (C.6) as

∑

I

δTI

∮

CI

dρ

2πi
〈TXi(ρ)〉

=
∑

I

δ (ρ(zI+1) − ρ(zI))

∮

CI

dz

2πi

(−2{ρ, z})

∂ρ(z)

=
N
∑

r=1

δρ(z
(r)
I )

∮

Zr

dz

2πi

(−2{ρ, z})

∂ρ(z)
+
∑

I

δρ(zI)

∮

zI

dz

2πi

(−2{ρ, z})

∂ρ(z)

+δρ(z∞I )

∮

∞

dz

2πi

(−2{ρ, z})

∂ρ(z)
, (C.9)

where z∞I denotes the interaction point closest to z = ∞.

From eq. (C.2), one can easily find that term (II) becomes

(II) = −
N
∑

r=1

ℓrδαr

∮

Zr

dz

2πi

(−2{ρ, z})

∂ρ(z)
+ c.c. . (C.10)

We can recast the r-th term of (III) in eq. (C.6) into

i2πδαr

∫

LrN

dρ

2πi
〈TXi(ρ)〉 = i2πδαr

∫

LrN

dz

2πi

(−2{ρ, z})

∂ρ(z)

= i2πδαr

∫

L̃rN

dz

2πi

ln(z−Zr)−ln(z−ZN )

2πi

(−2{ρ, z})

∂ρ(z)
. (C.11)

Here we have taken the cut of the function ln(z − Zr) − ln(z − ZN ) in the integrand on

the right hand side to be the segment LrN and the integration path L̃rN to be the sum
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Figure 2. The integration path L̃rN consists of the two oriented segments described by the arrowed

bold lines. The dashed line denotes the cut of the integrand on the right hand side of eq. (C.11).

of the two oriented segments connecting two punctures Zr and ZN as depicted in figure 2.

Deforming the contours to rearrange eq. (C.11) further and summing over r, we obtain

i2π

N
∑

r=1

δαr

∫

LrN

dρ

2πi
〈TXi(ρ)〉 = −

(

N
∑

r=1

∫

Cr

+
∑

I

∮

zI

+

∮

∞

)

dz

2πi
δρ(z)

(−2{ρ, z})

∂ρ(z)
,

(C.12)

where Cr and CN are depicted in figure 2.

Eventually we obtain the expression

δ (−Γ[φ]) =

[

−
N
∑

r=1

∫

Cr

dz

2πi

δρ(z) − δρ(z
(r)
I ) + δαrℓr

∂ρ(z)
(−2{ρ, z})

−
∑

I

∮

zI

dz

2πi

δρ(z) − δρ(zI)

∂ρ(z)
(−2{ρ, z})

−

∮

∞

dz

2πi

δρ(z) − δρ(z∞I )

∂ρ(z)
(−2{ρ, z})

]

+ c.c. . (C.13)

Evaluation of the contour integrals. Let us evaluate the contour integrals on the right

hand side of eq. (C.13). For z ∼ Zr, zI ,∞, the Schwarzian derivative {ρ, z} behaves as

− 2{ρ, z} =



























−
1

(z − Zr)2
+

1

z − Zr

∂ (−W )

∂Zr
+ O

(

(z − Zr)
0
)

z ∼ Zr

3

(z − zI)2
+

1

z − zI

∂ (−W )

∂zI
+ O

(

(z − zI)
0
)

z ∼ zI

O
(

1
z4

)

z ∼ ∞

, (C.14)

where W is a function of Zr, Z̄r, zI , z̄I defined as

W (Zr, Z̄r, zI , z̄I) ≡ −2





∑

I>J

ln |zI − zJ |
2 +

∑

r>s

ln |Zr − Zs|
2 −

∑

I,r

ln |Zr − zI |
2



 . (C.15)

For the contour integral along Cr, one should notice that δρ(z) involves a term
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δαr ln(z − Zr). This part can be integrated as

∫

Cr

dz

2πi

δαr ln(z − Zr)

∂ρ(z)
(−2{ρ, z}) ∼ −

1

αr

∫

Cr

dz

2πi

δαr ln(z − Zr)

z − Zr

= −
δαr

αr

∫

dθ

2π
(ln ǫr + iθ)

= −
δαr

αr
(ln ǫr + imaginary part) , (C.16)

for ǫr ∼ 0. The other terms can be evaluated by taking the residues of the simple poles

and one can show

−
N
∑

r=1

∫

Cr

dz

2πi

δρ(z) − δρ(z
(r)
I ) + δαrℓr

∂ρ(z)
(−2{ρ, z}) + c.c

= δ

(

−2

N
∑

r=1

ReN̄ rr
00

)

+

N
∑

r=1

(

δZr
∂ (−W )

∂Zr
+ c.c.

)

, (C.17)

where N̄ rr
00 is a Neumann coefficient given by

N̄ rr
00 = −

∑

s 6=r

αs

αr
ln(Zr − Zs) +

τ
(r)
0 + iβr

αr
, (C.18)

and τ
(r)
0 + iβr is defined in eq. (B.3).

For z ∼ zI , one can show

δρ(z) − δρ(zI)

∂ρ(z)
= −δzI + (z − zI)δ

(

1

2
ln ∂2ρ(zI)

)

+ O
(

(z − zI)
2
)

, (C.19)

using

δzI = −
∂δρ(zI)

∂2ρ(zI)
, (C.20)

which is derived by varying the equation ∂ρ(zI) = 0 under eq. (C.1). The contour integral

around zI can be obtained as

−
∑

I

∮

zI

dz

2πi

δρ(z) − δρ(zI )

∂ρ(z)
(−2{ρ, z}) + c.c.

= δ

(

−3
∑

I

ln
∣

∣∂2ρ(zI)
∣

∣

)

+
∑

I

(

δzI
∂ (−W )

∂zI
+ c.c.

)

. (C.21)

It is easy to see that the integral around ∞ vanishes.

Putting all the pieces together, we obtain

− Γ[φ] = −W − 2

N
∑

r=1

Re N̄ rr
00 − 3

∑

I

ln
∣

∣∂2ρ(zI)
∣

∣ . (C.22)

This form of Γ[φ] is useful in the calculations in section 3.
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Other expressions. We note that W can be described as

W = 2

N
∑

r=1

ln |αr| − 4 ln

∣

∣

∣

∣

∣

N
∑

r=1

αrZr

∣

∣

∣

∣

∣

− 2
∑

I

ln
∣

∣∂2ρ(zI)
∣

∣ , (C.23)

which follows from eqs. (B.5) and (B.7). This yields

e−Γ[φ] =

N
∏

r=1

|αr|
−2

∣

∣

∣

∣

∣

N
∑

s=1

αsZs

∣

∣

∣

∣

∣

4

e−2
PN

r=1 Re N̄rr
00

∏

I

∣

∣∂2ρ(zI)
∣

∣

−1
. (C.24)

This expression is the one obtained by the method in ref. [5]. We also note that

e−Γ[φ] =

N
∏

r=1

|αr|
−1 e−

1
2
W

∣

∣

∣

∣

∣

N
∑

s=1

αsZs

∣

∣

∣

∣

∣

2

e−2
PN

r=1 Re N̄rr
00

∏

I

∣

∣∂2ρ(zI)
∣

∣

−2
, (C.25)

which is used in sections 2 and 4.

D Correlation functions of ∂X−(z)’s

In this appendix, we present the details of the calculations to obtain eqs. (3.13) and (3.17).

Let us consider the interaction points z′I , z
′
I(0) and z′

I(N+1) for ρ′(z) defined in eq. (3.12),

which tend to zI , Z0 and ZN+1 as α0 → 0 respectively. From eq. (3.12), we can obtain the

expansion of z′I , z
′
I(0) and z′

I(N+1) in terms of α0,

z′I − zI = −
α0

∂2ρ (zI)

(

1

zI − Z0
−

1

zI − ZN+1

)

+ O
(

α2
0

)

, (D.1)

z′
I(0) − Z0 = −

α0

∂ρ (Z0)

[

1 +

(

∂2ρ (Z0)

(∂ρ (Z0))
2 +

1

∂ρ (Z0)

1

Z0 − ZN+1

)

α0 + O
(

α2
0

)

]

,

z′
I(N+1)−ZN+1 =

α0

∂ρ (ZN+1)

[

1−

(

∂2ρ (ZN+1)

(∂ρ (ZN+1))
2 +

1

∂ρ (ZN+1)

1

ZN+1−Z0

)

α0+O
(

α2
0

)

]

.

The Neumann coefficients N̄ ′rr
00 for the Mandelstam mapping ρ′ behave as

Re N̄ ′rr
00 = Re N̄ rr

00 +
α0

αr
ln

∣

∣

∣

∣

∣

∣

(

z
(r)
I − Z0

)

(Zr − ZN+1)

(Zr − Z0)
(

z
(r)
I − ZN+1

)

∣

∣

∣

∣

∣

∣

+ O
(

α2
0

)

(r 6= 0, N + 1) ,

Re N̄ ′00
00 = ln

∣

∣

∣

∣

α0

∂ρ(Z0)

∣

∣

∣

∣

− 1

+ Re

(

1

2

∂2ρ (Z0)

(∂ρ (Z0))
2 +

1

∂ρ (Z0) (Z0 − ZN+1)

)

α0 + O
(

α2
0

)

,

Re N̄ ′N+1N+1
0 0 = ln

∣

∣

∣

∣

α0

∂ρ(ZN+1)

∣

∣

∣

∣

− 1

−Re

(

1

2

∂2ρ (ZN+1)

(∂ρ (ZN+1))
2 +

1

∂ρ (ZN+1) (ZN+1 − Z0)

)

α0 + O
(

α2
0

)

. (D.2)
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Using eqs. (B.4) and (D.1), we obtain

W ′ = 8 ln |α0| + W − 4 ln |∂ρ(Z0)∂ρ(ZN+1)|

+ 2Re

[

−
∑

I

1

∂2ρ(zI)

(

1

zI − Z0
−

1

zI − ZN+1

)

∂W

∂zI

+ 4
∂2ρ(Z0)

(∂ρ(Z0))
2 − 4

∂2ρ(ZN+1)

(∂ρ(ZN+1))
2

+ 2
1

∂ρ(Z0)

1

Z0 − ZN+1
− 2

1

∂ρ(ZN+1)

1

ZN+1 − Z0

]

α0 + O
(

α2
0

)

, (D.3)

and

∂2ρ′
(

z′I
)

= ∂2ρ (zI) +

(

−
1

(zI − Z0)
2 +

1

(zI − ZN+1)
2

)

α0

−
∂3ρ (zI)

∂2ρ (zI)

(

1

zI − Z0
−

1

zI − ZN+1

)

α0 + O
(

α2
0

)

,

∂2ρ′
(

z′
I(0)

)

= −
(∂ρ (Z0))

2

α0

×

[

1 −

(

3∂2ρ (Z0)

(∂ρ (Z0))
2 +

2

∂ρ (Z0) (Z0 − ZN+1)

)

α0 + O
(

α2
0

)

]

,

∂2ρ′
(

z′
I(N+1)

)

=
(∂ρ (ZN+1))

2

α0

×

[

1+

(

3∂2ρ (ZN+1)

(∂ρ (ZN+1))
2 +

2

∂ρ (ZN+1) (ZN+1−Z0)

)

α0+O
(

α2
0

)

]

. (D.4)

Gathering all the relations obtained above, we have

Γ[ln
(

∂ρ′∂̄ρ̄′
)

] = 6 ln |α0| − 4 + Γ[ln
(

∂ρ∂̄ρ̄
)

]

+ 2Re





N
∑

r=1

1

αr
ln

∣

∣

∣

∣

∣

∣

(

z
(r)
I − Z0

)

(Zr − ZN+1)

(Zr − Z0)
(

z
(r)
I − ZN+1

)

∣

∣

∣

∣

∣

∣

−
∑

I

1

∂2ρ(zI)

(

1

zI − Z0
−

1

zI − ZN+1

)

∂W

∂zI

−
3

2

∑

I

1

∂2ρ(zI)

(

1

(zI − Z0)
2 −

1

(zI − ZN+1)
2

)

−
3

2

∑

I

∂3ρ (zI)

(∂2ρ (zI))
2

(

1

zI − Z0
−

1

zI − ZN+1

)

]

α0 + O
(

α2
0

)

. (D.5)

We can see that limα0→0 Γ[ln
(

∂ρ′∂̄ρ̄′
)

] is divergent and does not coincide with Γ[ln
(

∂ρ∂̄ρ̄
)

].

This singularity can be avoided by modifying Γ → Γ−
∑

r (3 ln |αr| − 2), which corresponds

to a renormalization of the operator e−ip+
r X−

. Such a renormalization is irrelevant to the
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calculation of the right hand side of eq. (3.11) and we obtain

∂Z0∂α0 Γ[ln
(

∂ρ′∂̄ρ̄′
)

]
∣

∣

α0=0
= ∂Z0

[

N
∑

r=1

1

αr
ln

(

z
(r)
I −Z0

Zr−Z0

)

−
∑

I

1

∂2ρ(zI)

1

zI − Z0

∂W

∂zI

−
3

2

∑

I

1

∂2ρ(zI)

(

1

(zI − Z0)
2 +

∂3ρ (zI)

∂2ρ (zI)

1

zI − Z0

)

]

.

(D.6)

From this equation, we can compute the right hand side of eq. (3.11) and obtain eq. (3.13).

Let us evaluate the right hand side of eq. (3.16). This can be evaluated by using

eq. (D.6) with Z0, ρ(zI) and I replaced by z, ρ′(z′I′) and I ′ respectively and with the range

of the index r taken to be from 0 to N + 1. The terms in which we are interested are the

r = 0 contribution of the first term and the I ′ = I(0) case of the second and the third terms

in the square brackets on the right hand side of eq. (D.6) with the replacements mentioned

above. In order to evaluate the first term, we use

1

α0
ln

z − z′
I(0)

z − Z0
=

1

∂ρ(Z0)(z − Z0)

+

[

−1
2

(∂ρ(Z0))
2

1

(z − Z0)2
+

(

∂2ρ(Z0)

(∂ρ(Z0))
3 +

1

(∂ρ(Z0))
2

1

Z0 − ZN+1

)

1

z − Z0

]

α0

+ O
(

α2
0

)

, (D.7)

which follows from eq. (D.1). For the computation of the second and the third terms,

we use

1

∂2ρ′
(

z′
I(0)

) = −
α0

(∂ρ(Z0))
2 −

[

3∂3ρ(Z0)

(∂ρ(Z0))
4 +

2

(∂ρ(Z0))
3

1

Z0 − ZN+1

]

α2
0 + O

(

α3
0

)

,

1

z − z′
I(0)

=
1

z − Z0
−

1

∂ρ(Z0)

1

(z − Z0)2
α0 + O

(

α2
0

)

,

∂W ′

∂z′
I(0)

= −
∂3ρ′(z′

I(0))

∂2ρ′(z′
I(0))

= −2∂ρ(Z0)
1

α0
+

2

Z0 − ZN+1
+ O(α0) . (D.8)

Combining these relations, we obtain eq. (3.17).
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